Left Termination of the query pattern
countstack_in_2(g, a)
w.r.t. the given Prolog program could successfully be proven:
↳ Prolog
↳ PrologToPiTRSProof
Clauses:
countstack(empty, 0).
countstack(push(nil, T), X) :- countstack(T, X).
countstack(push(cons(U, V), T), s(X)) :- countstack(push(U, push(V, T)), X).
Queries:
countstack(g,a).
We use the technique of [30].Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
countstack_in(push(cons(U, V), T), s(X)) → U2(U, V, T, X, countstack_in(push(U, push(V, T)), X))
countstack_in(push(nil, T), X) → U1(T, X, countstack_in(T, X))
countstack_in(empty, 0) → countstack_out(empty, 0)
U1(T, X, countstack_out(T, X)) → countstack_out(push(nil, T), X)
U2(U, V, T, X, countstack_out(push(U, push(V, T)), X)) → countstack_out(push(cons(U, V), T), s(X))
The argument filtering Pi contains the following mapping:
countstack_in(x1, x2) = countstack_in(x1)
push(x1, x2) = push(x1, x2)
cons(x1, x2) = cons(x1, x2)
s(x1) = s(x1)
U2(x1, x2, x3, x4, x5) = U2(x5)
nil = nil
U1(x1, x2, x3) = U1(x3)
empty = empty
0 = 0
countstack_out(x1, x2) = countstack_out(x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
countstack_in(push(cons(U, V), T), s(X)) → U2(U, V, T, X, countstack_in(push(U, push(V, T)), X))
countstack_in(push(nil, T), X) → U1(T, X, countstack_in(T, X))
countstack_in(empty, 0) → countstack_out(empty, 0)
U1(T, X, countstack_out(T, X)) → countstack_out(push(nil, T), X)
U2(U, V, T, X, countstack_out(push(U, push(V, T)), X)) → countstack_out(push(cons(U, V), T), s(X))
The argument filtering Pi contains the following mapping:
countstack_in(x1, x2) = countstack_in(x1)
push(x1, x2) = push(x1, x2)
cons(x1, x2) = cons(x1, x2)
s(x1) = s(x1)
U2(x1, x2, x3, x4, x5) = U2(x5)
nil = nil
U1(x1, x2, x3) = U1(x3)
empty = empty
0 = 0
countstack_out(x1, x2) = countstack_out(x2)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
COUNTSTACK_IN(push(cons(U, V), T), s(X)) → U21(U, V, T, X, countstack_in(push(U, push(V, T)), X))
COUNTSTACK_IN(push(cons(U, V), T), s(X)) → COUNTSTACK_IN(push(U, push(V, T)), X)
COUNTSTACK_IN(push(nil, T), X) → U11(T, X, countstack_in(T, X))
COUNTSTACK_IN(push(nil, T), X) → COUNTSTACK_IN(T, X)
The TRS R consists of the following rules:
countstack_in(push(cons(U, V), T), s(X)) → U2(U, V, T, X, countstack_in(push(U, push(V, T)), X))
countstack_in(push(nil, T), X) → U1(T, X, countstack_in(T, X))
countstack_in(empty, 0) → countstack_out(empty, 0)
U1(T, X, countstack_out(T, X)) → countstack_out(push(nil, T), X)
U2(U, V, T, X, countstack_out(push(U, push(V, T)), X)) → countstack_out(push(cons(U, V), T), s(X))
The argument filtering Pi contains the following mapping:
countstack_in(x1, x2) = countstack_in(x1)
push(x1, x2) = push(x1, x2)
cons(x1, x2) = cons(x1, x2)
s(x1) = s(x1)
U2(x1, x2, x3, x4, x5) = U2(x5)
nil = nil
U1(x1, x2, x3) = U1(x3)
empty = empty
0 = 0
countstack_out(x1, x2) = countstack_out(x2)
U21(x1, x2, x3, x4, x5) = U21(x5)
U11(x1, x2, x3) = U11(x3)
COUNTSTACK_IN(x1, x2) = COUNTSTACK_IN(x1)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
COUNTSTACK_IN(push(cons(U, V), T), s(X)) → U21(U, V, T, X, countstack_in(push(U, push(V, T)), X))
COUNTSTACK_IN(push(cons(U, V), T), s(X)) → COUNTSTACK_IN(push(U, push(V, T)), X)
COUNTSTACK_IN(push(nil, T), X) → U11(T, X, countstack_in(T, X))
COUNTSTACK_IN(push(nil, T), X) → COUNTSTACK_IN(T, X)
The TRS R consists of the following rules:
countstack_in(push(cons(U, V), T), s(X)) → U2(U, V, T, X, countstack_in(push(U, push(V, T)), X))
countstack_in(push(nil, T), X) → U1(T, X, countstack_in(T, X))
countstack_in(empty, 0) → countstack_out(empty, 0)
U1(T, X, countstack_out(T, X)) → countstack_out(push(nil, T), X)
U2(U, V, T, X, countstack_out(push(U, push(V, T)), X)) → countstack_out(push(cons(U, V), T), s(X))
The argument filtering Pi contains the following mapping:
countstack_in(x1, x2) = countstack_in(x1)
push(x1, x2) = push(x1, x2)
cons(x1, x2) = cons(x1, x2)
s(x1) = s(x1)
U2(x1, x2, x3, x4, x5) = U2(x5)
nil = nil
U1(x1, x2, x3) = U1(x3)
empty = empty
0 = 0
countstack_out(x1, x2) = countstack_out(x2)
U21(x1, x2, x3, x4, x5) = U21(x5)
U11(x1, x2, x3) = U11(x3)
COUNTSTACK_IN(x1, x2) = COUNTSTACK_IN(x1)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 2 less nodes.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
COUNTSTACK_IN(push(nil, T), X) → COUNTSTACK_IN(T, X)
COUNTSTACK_IN(push(cons(U, V), T), s(X)) → COUNTSTACK_IN(push(U, push(V, T)), X)
The TRS R consists of the following rules:
countstack_in(push(cons(U, V), T), s(X)) → U2(U, V, T, X, countstack_in(push(U, push(V, T)), X))
countstack_in(push(nil, T), X) → U1(T, X, countstack_in(T, X))
countstack_in(empty, 0) → countstack_out(empty, 0)
U1(T, X, countstack_out(T, X)) → countstack_out(push(nil, T), X)
U2(U, V, T, X, countstack_out(push(U, push(V, T)), X)) → countstack_out(push(cons(U, V), T), s(X))
The argument filtering Pi contains the following mapping:
countstack_in(x1, x2) = countstack_in(x1)
push(x1, x2) = push(x1, x2)
cons(x1, x2) = cons(x1, x2)
s(x1) = s(x1)
U2(x1, x2, x3, x4, x5) = U2(x5)
nil = nil
U1(x1, x2, x3) = U1(x3)
empty = empty
0 = 0
countstack_out(x1, x2) = countstack_out(x2)
COUNTSTACK_IN(x1, x2) = COUNTSTACK_IN(x1)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
COUNTSTACK_IN(push(nil, T), X) → COUNTSTACK_IN(T, X)
COUNTSTACK_IN(push(cons(U, V), T), s(X)) → COUNTSTACK_IN(push(U, push(V, T)), X)
R is empty.
The argument filtering Pi contains the following mapping:
push(x1, x2) = push(x1, x2)
cons(x1, x2) = cons(x1, x2)
s(x1) = s(x1)
nil = nil
COUNTSTACK_IN(x1, x2) = COUNTSTACK_IN(x1)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
Q DP problem:
The TRS P consists of the following rules:
COUNTSTACK_IN(push(cons(U, V), T)) → COUNTSTACK_IN(push(U, push(V, T)))
COUNTSTACK_IN(push(nil, T)) → COUNTSTACK_IN(T)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the usable rules with reduction pair processor [15] with a polynomial ordering [25], all dependency pairs and the corresponding usable rules [17] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
COUNTSTACK_IN(push(cons(U, V), T)) → COUNTSTACK_IN(push(U, push(V, T)))
COUNTSTACK_IN(push(nil, T)) → COUNTSTACK_IN(T)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [25]:
POL(COUNTSTACK_IN(x1)) = 2·x1
POL(cons(x1, x2)) = 2 + 2·x1 + 2·x2
POL(nil) = 0
POL(push(x1, x2)) = 1 + 2·x1 + x2
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.